The CTQD Board

(DRAFT)
S.L. Linn - Florida State University
1 Jan 2001
(Revised 19 Mar 2003)

Introduction

This document provides a description of the programming and operation of the CTQD
boards in the DO L1/L2 central track trigger (CTT) system. The CTT fits central fiber
tracker (CFT) hits to form a track characterized by a transverse momentum (P¢) and
azimuth angle (F7). Through an identical readout system, the CTT reconstructs the Fi
position of energy clusters in central pre-shower (CPS) system. An overview of the CTT
is shown in Fig.1. The four CTQD boards receive LVDS signals from the eight CTOC
boards, and transmit the processed track and cluster information to the L2 preprocessors
with optical fiber G-links. The CTQD board is a generic double-wide daughter board
(DWDB). Each CTQD has two Xilinx 600 FPGA chips in the U3 and U5 positions. The
track and cluster algorithms are implemented on the U3 chip alone. The inputs and
outputs conform to the protocols , unless otherwise noted. The algorithms were first
described in the system architecture document.

CTTT
7oy
LeTTT p—— L 1CTTT
LeTTT p——— B JCTTT
ngm
CcTOCKE CTQDx4
zeng m - m o endm DL2CFT(3.0)
MIX DFEA
WP(E0) o AFE | P | Eope 7 1) D eps QD) DL2CPS(3:0)
PINET m
QM) frmetiGam LICTOC G DLICTOC(7:0)
STOVx6
crssqm o eim
| STSXx6
DFESx4 HOID 261 3| DT S5 (510
raam LIEm L3STSX(5:0)
T o
L2oPESEm DL2CP55(3:0)
LacessEm L3CPS5(3:0)

(C)ALDEC. Inc LD E C
2230 Corporate Circle

Henderson, NV 89074 The Design Verification Company

Created: |2/9/2003

Title: The Dzero CTT System

Figure 1 - Block diagram of the CTT system components: Analog Front End, MIXer, Digital Front
End, Digital Front End Stereo, octant collector (CTOC), quadrant collector (CTQD), STT overlap
(STOV), STT sextant (STSX), and CTT term collector.

Description of the algorithm

The CTQD board combines track and cluster information from two CTOC boards, and
produces outputs which are ordered in Pt and Fi respectively. The inputs arrive ordered
in Pt and Fi, so only a simple ordering is necessary. The most difficult and time-
consuming part of the algorithm is the association of a track P with a cluster; because,
upstream of the CTQD, this is done only when the track and cluster are in the same
octant. The CTQD board must fill the P¢ field of cluster records when it is missing. The
situation where this occurs is shown in Fig. 2, where the cluster is resident in one octant,
but the track hits are in the adjacent octant. In this case the cluster P¢ bin is missing and
all tracks in the boundary sector must be tested for possible matching.

Sregl

CP3

Figure 2 - Data flows in the CTQD for combining octants 0 and 1. Links 0,1,2,7 carry track
information from like numbered octants. Links 3 and 4 carry cluster information for octants 0 and 1
respectively.

The data flow is shown graphically in Fig.2. For example, combination of information
from octants O0 and O1 uses tracks from Links 0 and 1, and cluster information from
Links 3 and 4. To effect the cluster corrections, it is also necessary to have tracks from
00 and O7 on Links 0 and 7 respectively. Data flowing between the major functional
units is represented by the arrows in Fig.2. The six link receivers are shown on the left.
Track information from two octants is ordered in Pt and transmitted to a level-2 sender,
which formats and transmits the combined list. Cluster information is first corrected for
possible “bend in” tracks, and then ordered in Fi before formatting and transmission to
the L2 processors.

A

g

Figure 3 - CTQD top level block diagram

Firmware Implementation

Figure 3 is a block diagram (BDE) of the top-level design. The data flows primarily from
left to right. The front end module stores the event. The clusto modules are wrappers for
the cluster Pf correction function. Each instantiation reads one octant of cluster data and
two adjacent octants of track information. The corrected cluster frames are stored in
block rams for later processing.

Ordering of track and cluster information is done by the finite state machines (FSM) sort,
which is contained in the BDE combine and combine2 respectively.

The modules sender and sender2 are FSM that construct the six L2 G-link header frames,
two trailer frames, 2x the number of tracks or clusters, and pad frames. The module
slow_interface is responsible for slow monitoring, and is a modification of Olsen’s
LICTOC interface.

What follows are block diagrams and finite state machines, which illustrate the main
functions of the implementation. If more detail is required the reader should RTFC.

Front_end

_ delay one tic

store tracks

dwdb_fef

Tl skt Syneronize afer party

syncronize inputs !

it
b Eftvotes Pl

majority vate | Creaisd: |0/1072000
Title: frowt_and

parity comaction |

Figure 4 - Block diagram of front_end.

Block diagram front _end consolidates reception (dwbd_fe), correction (Receivers6), and
storage (storage) of the input link data. The module EvtVote6 determines the event
number (tic & turn), and sync6 re-syncronizes the time structure of all links after parity
correction, which must wait till the end of each event stream. First, each link is
synchronized to the global board clock using the Olsen’s method, and missing link
information is stored for later use. Then the data frames from each link are corrected for
parity errors. The turn and rotation for the event are determined by a majority vote of
links0, 1, and 2, and all links are compared to the winner. Finally the data frames are
stored sequentially in a block ram where they can be accessed by the other functional
units. Since parity correction requires reading all data frames from a link, a final begin of
event (BoE) signal is created when all links have finished.

Link Receiver Module

delay
np(27 U)ﬁu(z 0 - 4 atoa(27:0)
e
e dpb_N
stog2:0) compute Hpari arity correct .
P parity parity register header
dator7:3) datooa(240)
f2im S dan2im o ParEn ‘ {FarErr
122m0m
ogm o °°°:24m \ Droutp(24:0)
o o
S Ll BORONL BoR
bori o’ u1s o ksl | g
ek He g T W datooso(z30)
ok |+ atop24gArcom g
B b fbor veadem
first sefs corrector u hedof8.5) | =
datoo(12:10) I 3 gl
decode BoE datoo(15:43) H[hedo(a:0)
&: gk U)“ - hedo(4:0) HedRe hedof4:
gek E— PITCT g —
s ooz
retE— m;m [P vi(23:0)
BoRfljg ack U5
rst HP oDl (1) L
del_0
+ack U4
+it, GetObj
register ticAurn

objects from parity matrix

Figure S - Block diagram of receiver

(CALDEC. Inc
2230 Corporate Circle
Henderson, NV 89074

==ALDEC

The Design Verification Company

Created: 121272001

Title: receiver

The module receiver houses several functions: parity correction (corrector),

determination of the number of data objects using a parity matrix (GetObj), determination

of the first frame (first), and registering of the header and event frames (HedReg and

EvtReg). For each frame, parcom computes the horizontal parity (HPC), and replaces the

horizontal parity (HP), with HP XOR HPC.

add@m bor addam
soer U2 agex U1
1 addsel *I** addse L douan)
retC—
Cirst GI) DPRAGD
ug
inp(24:0) 2> @40 DECRADD _r1au u(24.0)
gck B——+{weik Frame @4y
o RAN SZXPSD Fameo im0 Utp (24 0)
Ohj(4 D) rmmefotic sy @ocle PR ook [
U7
BoRIn &+ c
EoRout VP(230) nobu)arcor
sask ear o e @
U WF C(Z30)
=] "betEo vAC @am @3m
rerr ——>ParErr £ (33
LELS
Ml LS o)
Hetlel 0 = ypreg
s b—>BoR Out

U3

ek

et del_1

{C)ALDEC. Inc LD EC
2230 Corporate Circle

Henderson, NV 89074 The Design Verification Company

Created: 121272001

Title: Corrector

Figure 6 - Block diagram of Corrector.

The block diagram corrector performs the parity correction itself. The module vpreg
calculates the vertical parity (VPC) and registers the vertical parity (VP). The module
GetEoR counts words and issues and end-of-event signal. While reading all input data
frames, the event is stored in a slice RAM (ram32x25d), and addresses are computed by
addsel. Finally, the process NobjParCor computes the parity corrected frame.

The general expression for parity correction of bit b in frame F' is given by:

F(b)corrected = F(b) XOR FC(b), where
FC(b) = (HP(F) XOR HPC(F)) AND (VP(b) XOR VPC(b)), where
HP(F) is the horizontal parity of the input frame, HPC(F) is the re-computed horizontal

parity of the input frame, VP(b) is bit b of the vertical parity, and VPC(b) is bit b of the
re-computed horizontal parity.

Track Storage

28 bit DP RAM
borin 2 add (il —— _hpi ﬂat_nLlJ‘gﬂﬂJ el 21 (27 :0)
oot 12 t RSN dd(4: 05> o
;rxh/ | addGiIh dap@Td a7) thpEf o
EICSE | | |NK(24D) eetaiziy o
dato(24:0) ke u3 —
Address selector i ack GEKD— [ram256x28b
m O GCK
Cirst
hed(7) *”féSk rst [B—
head(3:0) O Jegcid) BHead0out(d0)

Add information to track frame (C)ALDEC. Inc

-- bits 23-20 standard format 2230 Corporate Circle %LD E C

-- bit 24 transverse parity error Henderson, NV 89074 The Design Verification Company

-- bit 25 octant bit

- bit 26 m bit Created: 8/10/2000

-- bit 27 end av event bit

Title: SavTrak
206 226 adb 2 286 a0
Name . | . . 1 . . | . . | . . 1 . . 1
. ng

barin I I
LINK YIFFFFOT X0AOO03C YOEO0152 KO60184E X0019534 KOBSEE!
addinp o Jo2 } (E %04
dating YAFFFFOT YoADO03C YXEEOD152 Ye60124E ¥250105
6K RN

Figure 7 - Block diagram of SavTrk (top), and waveform of signals (bot).

Module SavTrk performs final storage function before link combination. The BoRin
signal precedes the first track/cluster frame by one clock tic — this use of the Begin-of-
Event signal is employed throughout the whole design, and is especially useful in all
FSM.. The mask (U3) process extracts the octant /sh and inserts it into bit-25, and creates
an end-of-event frame (bit-27=1) after the last track/cluster frame. BoRin starts the RAM
address selector (addsel) as the track frames are sequentially stored in the RAM from
address 1 to Ntracks.

agg;ﬂaggr;; @_g“ B-= Entity: sort
add?<=addr?: ; . "
next1<=addr1+"00001"; I:)_uagzp?q D a Architecture: sort @
next2==addr2+'00001", e az @ {7y eoniEn () vt
countMext<=count+"000001" - - >

D‘mﬁq D_mr @m[‘q @ ContiertED @amn[tq

D o o i

Sregl

hor="7

f(di="1)then

datad«<=x"0000000" Data3<=datat,
count<="000000" addriz=nextt,
addr1=="00001" elsif{ d2="1" Jthen
addrd<="00001" Data3<=dataZ,

addr2<=next2;
else

null;
end if;
count<=countiext,

Figure 8 - State Machine of Sort

The state machine process performs a ordering of the two input streams. It relies on the
concurrent computation of bits d/ and d2 inside compare and compare?2 respectively,
where
d1<="l"when ((datal(27)='0"and not(data2(12 downto 8) <datal(12 downto
8))) or data2(27)='1") else '0';

d2<='l"when ((data2(27)='0" and data2(12 downto 8) <datal (12 downto 8))
or datal(27)="l") else '0";
Recall that data bits 12-8 are the Pz bin and bit 27 is signals the end of data.
For the cluster ordering
dI1<='l"when ((datal(27)='0" or data2(27)='1") and err(0)="0'
) else '0";

d2<='l"when ((data2(27)='0" or datal(27)='l") and err(1)="0'

) else '0";
First, a track frame from each link is retrieved from the block ram. On the next clock
cycle, the dI and d2 values are compared and the largest Pt is placed in an output register
and the RAM address is incremented. Processing each input track requires two clock
cycles and formatting requires two G-link frames, so the output is synchronous and no
intermediate storage is required. The ordering of clusters is identical except that no Fi
comparison is necessary since all clusters from the lower octant have lower Fi values
than those in the higher octant. To speed the process, all addresses concurrently
precomputed.

Cluster Storage
(et tracks in adjacent octant

Carrect clusters

b j0(9:0)

hed0(9:0) [Cr——
et —horo
b j0(4:0) \ donsbor addou(d) ._|7 addaoy
doe : - e ddott)
datDi27:0) &> I i e I " 0
i d atou(27:0)
add(4:0) Cl——ngn aedi0n Hlpan datonmm 7 wl:) TRl m—"t:z aatonim eydato(27:0)
o IS Lt o
dat2(27 0) sz i LIS (T) o
5 anerm AR o e} fidatzT m Lnpar D
add2(4:0) C o e sdat(27:0) [——fepsdatzr ile adgor: U3
: psadd(d D) C=epopcandam fixar st o ram256x28b
= uz *[Pamzs6x28b
15t t
e sizaoy | getem | TruEn
Cigek
gck
hed2(9 0) e

objepsea:m

(C)ALDEC. Inc
neps(9:0) D——— 2230 Corporate Circle %LD E c

Henderson, NV 89074 The Design Verification Company

Created: |6/7/2001

Title: CluSto

Figure 9 - Block diagram of CLUSTO

There is an instantiation of clusto for each cluster link, which stores clusters after
correction for so called ‘bend-in’ tracks. The module gefem (U2) gathers tracks from the
two adjacent octants, and sends to the output RAM (U1). When all tracks have been
processed, a done bit is set, and the number of correction tracks is available.

Upon receipt of the done bit, the fixer module (U4), applies the correction, and cluster
frames are stored in the output RAM (U3).

e p— el Entity: getem

mooaum [-esn Architecture: getem Ty Tmem (7)) OW16d
= ?
am3AH2: Err s
e oy wopg) EED (rysnann (@wnsa =fywea
D:ﬂ:-D:'L‘; l:>- @ a E >Tr||Err
TrEr<=TrErnT, ficielegdi | par @ SEHETD
Doresmotee; - - ey B i
D_uaﬂ[zrq D_ 3] dnes .Damz[m .Dammq _Dcme
Sreq dttt-<= " OIIT
Ea dobee=='TT; ¢ 0¢ 19 WD 161=305" A dFOCi="1' and cEO="1') thed
~TrEnT="T; it 27 downh i A== GoMn 2 ;
aom=="0001"; M (19 oM D 16)==3TT ;
2001 1-=="IT ; G (15 AN D) =015 downD ST
addi2-="00IH"; adddf==nertl;
=0 1-==0b{1; end It
a0==a0H DI
hert ==aidd1+ 001"
=4
s cmpa
= dohee<='1"; g: i
bl <=2 ¢4 downio ;. 3 /
Huert G="1" thes G
e;’;uEm =1 n(mﬂa(;‘gm ?;mru;é%?mdﬂa;g;mm@-'r)nel
VD e Vo dh;
Tkr o THuErT=='T; dat (19 oD 15==303
& end it = M (15 M D) < =215 dowiD BIECOT;
Eriry
A= adddi==nertl;
end it
2= ~adkd2+ I,
i Vet +=addd 1+ 00"
BN oF SR e

Figure 10 - FSM of GETEM

The FSM getem gathers tracks for use in cluster Pt bin correction from the front end
RAM. The inputs dat0(2) are track data from octants adjacent to a cluster octant. The
outputs datl are the collected data for octant corrections. The algorithm is implemented
as follows. The R bit indicates that the track has a cluster in a adjacent sector. If the low-
Fi (dat0) frame has a track in sector 9 with positive bend (S=1) and R=1, then change
RA TS CFT (dat(19 downto 16)) to 0 and send to output. If the high-fi (dat2) frame has
a track in sector 0 with negative bend (S=0) and R=1, then change RA_ TS CFT to 9 and
send to output. The output frame (datl) will have the RA TS CFT of the cluster for later
comparison with a cluster RA_TS CPS.

10

—dBgrm ACTION

cpecite="01";

5w

k= A () meen Eritity: fixer (fyememsa () eeea
peainlii Y () miea Architecture: fixer e
CfEtemTAL, s 10
Tinerk= e IO D—qxda‘ﬂ?f-l [y @maﬂu[‘q
matert:=mIcyt" 0001, TH [
T e ADesw O e
il (T owon @omen g e - =[prenia () e
hops 1= hope I D_ wope i D_ [T @ B @ LA
Srql goe='T;
kT =~ (OCTITT
Thochte="0000T | P

(i) ey o
Tinpesceecat ‘a

Tk emThibet,
CpEChE=CE et
ThochEe=Thibent

fiment=fixnext;
matcnt<="00000";
cftent="00001";

fixtmpi23 downto 1)<=cpzdat(Z3 downto 1<4);
fistmptd:2 dovnto 2)2="000411";
fitmpi¥ downto 0)==cpsdaty downto 0);

ifl (cpsdat’22 downto 19Fcftdat’23 downto 2007 and - RA_FPS
(cpsdat(6 downto 2Fcftdat19 dovnto 167) then - RA_TS
fixtmp(13 downto 8) <=cftdat13 downto 8); -- pt

fixdmprZi<=matnext(d) or matnesxd(3) or matnexd(Z) or matnesd(1y; -- m bit
matenta=matnesdt;

end if;

oftent<=cftnext;

else

end do

Inputs: cpsdat - list of clusters
cftdat - list of tracks with F=1 with TK_RSA modified
Cutputs: fixdat - list of carrected clusters.
Algroithm:
do cpscnt=1,ncps
iffR=0jthen
fixdat = cpsdat

do cftcnt=1,ncft

end do
end if

if{ RA_TS CFT=RA TS _CPS and RA_PSC_CFT =RA_PS CPS)then
PT_CPS=PT_CFT
end if

Figure 11 - FSM of FIXER

The FSM fixer implements a doubly nested loop by addressing dual port RAMs. The

outside loop over the list of clusters checks if the cluster R-bit=0. If so, then no correction
is applied and the cluster is output unchanged; otherwise, the list of tracks is looped. Each
track and cluster are compared to see if they are in the same relative trigger sector
(RA_TS) and cluster strip address (RA_PSC). If these are equal then the track is matched
and the cluster Pt field is filled with the track P¢, and a counter is incremented as all
tracks are checked. If the number of matching tracks is greater than one, the M-bit is set

to 1. The process is repeated until all clusters are corrected. If no matching track is found,

then P=7 (an illegal value). Note: The last track satisfying the matching condition is

always used, and a track can be used to correct more than one cluster.

11

Outline of Hierarchy
front_end - BDE
dwdb_fe6 - Jamiesons front end
receiver6 - BDE wrapper for 6 receivers
receiver - BDE
first - checks L1/L.2 and datatype
parcom - compute horozontal parity
hedreg - register header and event frames
corrector - BDE for parity correction.

addsel - FSM increments read and write address given BoE

ram32x25d - 32 deep by 25 wide DP ram

GetEor - FSM counts objects and send and end signal

del 0 - delays signal by one clock tic.
del 0 - delays signal by one clock tic
vpreg - computes Vparity and flags Hparity errors
nobjparcor - parity correction
evtvote6 - six input majority vote for event number (tic/turn)
maj3 24 - 24 bit 3 input majority vote
maj3 - 1 bit 3 input majority vote
comevt6 - compare six values to the winner.
sync6 - FSM send BoE for good links
storage - BDE
savtrk - BDE for track storage
addsel - address incrementer
ram256x28d - 28 wide 256 deep DPram
mask - add end of event marker and octantinfo to frames
clusto - BDE store and correct clusters
getem - FSM gather correction tracks
fixer - FSM correct tracks
ram256x28b - block ram for intermediate storage
combine - BDE combine tracks
compare - compare Pt
sort - FSM does ordering
combine2 — BDE, combine clusters
sync3 — FSM syncronize clusters after correction
compare?2 - compare fi
sort - FSM does ordering
sender - FSM output tracks
sender2 - FSM output clusters
slow_interface - interface to slow controls
muxN - address multiplexer
BusArb - does bus arbitration

12

Input Controls
No controls implemented yet

Outputs
Header frames 5 and 6 contain status information about the event. Header frame 5 has the
following format:

bits(5: 0) — parity errors for links(7,4,3,2,1,0)

bits(11 : 6) —link errors for links(7,4,3,2,1,0)

bits(15 : 12) - blank
and Header frame 6:

bits(5 : 0)— event errors for links(7,4,3,2,1,0)

bits(7 : 6) — truncation errors for links(4,3)

bits(9 : 8) — channel DNF errors for links(4,3)

bits(14 : 10) — blank

bits(15) — OR of all error bits
The first output frame of each track or cluster has three error bits with the following
meaning:

Bit5 — parity error detected and corrected

Bit6 — unused

Bit7 - unused

Slow Monitoring
page0 - feature register;
pagel - "00" & parity _history (links 7,4,3,2,1,0)
page2 - "00" & link history (links 7,4,3,2,1,0)
page3 - "00" & event history (links 7,4,3,2,1,0)

Performance
Copyright (¢) 1995-2002 Xilinx, Inc. All rights reserved.

Design Summary:
Number of errors: 0
Number of warnings: 100

Number of Slices: 2,911 out of 6,912 42%
Number of Slices containing
unrelated logic: Ooutof 2911 0%

Number of Slice Flip Flops: 2,906 out of 13,824 21%
Total Number 4 input LUTs: 3,938 out of 13,824 28%

Number used as LUTs: 2,833

Number used as a route-thru: 205

Number used for Dual Port RAMs: 900

(Two LUTs used per Dual Port RAM)
Number of bonded IOBs: 225 outof 404 55%
I0OB Flip Flops: 136
Number of Block RAMs: 20 outof 24 83%
Number of GCLKSs: 4outof 4 100%

13

Number of GCLKIOBsS: 4outof 4 100%
Total equivalent gate count for design: 431,267
Additional JTAG gate count for IOBs: 10,992

Peak Memory Usage: 105 MB

Device utilization summary:

Number of External GCLKIOBs 4 outofd4 100%
Number of External IOBs 225 out of 404 55%
Number of LOCed External IOBs 225 out of 225 100%

Number of BLOCKRAMs 20 outof 24 83%
Number of SLICEs 2911 out of 6912 42%
Number of GCLKs 4outofd 100%

Design statistics:
Minimum period: 15.939ns (Maximum frequency: 62.739MHz)
Maximum net skew: 0.946ns
Minimum input arrival time before clock: 2.900ns
Minimum output required time after clock: 7.352ns

14

